Multiple Classifier Applied on Predicting Microsleep from Speech

Jarek Krajewski 1, Anton Batliner 2, Rainer Wieland 1

1 Work and Organizational Psychology, Univ. of Wuppertal, Germany
2 Lehrstuhl fuer Mustererkennung, Univ. of Erlangen-Nuremberg, Germany
{krajewsk, wieland}@uni-wuppertal.de, batliner@informatik.uni-erlangen.de

Abstract

The aim of this study is to apply a state-of-the-art speech emotion recognition engine on the detection of microsleep endangered sleepiness states. Current approaches in speech emotion recognition use low-level descriptors and functionals to compute brute-force feature sets. This paper describes a further enrichment of the temporal information, aggregating functionals and utilizing a broad pool of diverse elementary statistics and spectral descriptors. The resulting 45k features were applied to speech samples gained from a car simulator based sleep deprivation study (N = 12; 01.00-08.00 a.m.). After a correlation-filter based feature subset selection, which was employed on the feature space in an attempt to maximize relevance, several classification models were trained. The best model (SVM, dot kernel) achieved 86.1% recognition rate in predicting microsleep endangered sleepiness stages.

1. Introduction

Little empirical research has been done to examine the effect of microsleep endangered sleepiness states [13] on acoustic voice characteristics. Most studies have analyzed only single features [7,16] or small feature sets containing only perceptual acoustic features, whereas signal processing based speech and speaker recognition features (e.g. MFCCs) have received little attention [8,9,11]. Thus, the aim of this study is to apply a state-of-the-art speech emotion recognition engine [2,3,10,14] on the detection of critical sleepiness states. Attention is drawn particularly on the computation of a 45k feature set using low-level descriptors (LLDs) and their temporal information aggregating functionals.

2. Brute-force feature extraction

The signal processing, speaker recognition and speech recognition based acoustic features (low-level descriptors, LLDs) can be computed for each single speech signal frame, and connected to raw contours. This procedure results in speech feature contours as e.g. the fundamental frequency contour or the bandwidth of formant 4 contour. In detail, the following low level descriptors (LLDs) were often chosen: fundamental frequency, intensity, harmonics-to-noise ratio, formant 1-6 (amplitude, position and bandwidth), MFCCs, LFCCs, duration of voiced/unvoiced speech segments, spectral features as band-energies, roll-off, centroid or flux, wavelets based features and long term average spectrum (LTAS). The next processing step captures temporal information of the acoustic contours (LLDs) by computing functionals. Frequently used functionals are percentiles (quartiles, quartile ranges, and other percentiles), extremes (min/max value, min/max position, range), distributional functions (number of segments/intervals/reversal points), spectral functionals (DCT coefficients), regression functions (intercept, error, regression coefficients), higher statistical moments: standard deviance, skewness, kurtosis, length, and zerocrossing-rate), means (arithmetic mean and centroid), and sequential and combinatorial: a minimum of two functionals has to be applied in either
a sequential way (e.g. max of regression error) or combinational way (e.g. ratio of mean of two different LLD).

3. Experimental Method

3.1. Procedure and subjects

Twelve students, recruited from the University of Applied Sciences, Schmalkalden, Germany, took part in this study voluntarily. Initial screening excluded those having severe sleep disorders or sleep difficulties. The participants were instructed to maintain their normal sleep pattern and behaviour. Due to recording and communication problems, the data of 2 participants could partly not be analyzed (4 speech samples).

We conducted a within-subject sleep deprivation design (01.00 - 08.00 a.m). During the night of sleep deprivation a well established, standardised self-report sleepiness measure, the Karolinska Sleepiness Scale (KSS) [1], was used by the subjects and the two experimental assistants almost every hour just before the speech recordings. In the version used in the present study, scores range from 1 to 10 (extremely alert =1, neither alert nor sleepy =5, extremely sleepy, can’t stay awake =10). Given the verbal descriptions, scores of 8 and higher appear to be most relevant from a practical perspective as they describe a state in which the subject feels unable to stay awake. During the night, the subjects were confined to the laboratory, conducting a driving simulator task and were supervised throughout the whole period.

3.2. Speech material

The recording took place in a laboratory room with dampened acoustics using a high-quality, clip-on microphone (sampling rate: 44.1 kHz, 16 bit). The input level of the sound recording was kept constant throughout the recordings. Furthermore the subjects were given sufficient prior practice so that they were not uncomfortable with this procedure. The verbal material consisted of a simulated pilot-air traffic controller communication (“Cessna nine three four five lima, county tower, runway two four in use, enter traffic pattern, report left base, wind calm, altimeter three zero point zero eight”). The participants recorded other verbal material at the same session, but in this article we focus on the material described above. For training and classification purposes, the records were further divided into two classes: alert (A) and microsleep endangered sleepy (MS) with the microsleep validated boundary value KSS ≥ 7.5 (8 samples per subject; total number of speech samples: 94 samples; 34 samples A, 60 samples MS; KSS:= mean of the three KSS-Ratings; M= 7.22; SD= 2.87).

As described above, the Acoustic Sleepiness Analysis follows a speech adapted pattern recognition approach: (a) recording speech, (b) preprocessing, (c) feature extraction, (d) dimensionality reduction, (e) classification, and (f) validation.

3.3. Feature extraction

All acoustic measurements were taken utterance-wise using the Praat speech analysis software for computing the LLDs [4]. As mentioned above we estimated the following 58 LLDs: fundamental frequency, fundamental frequency peak process, intensity, harmonics-to-noise ratio, formant position and bandwidth (F1-F6), 15 LPCs, 12 MFCCs, 12 LFCCs, duration of voiced, duration of unvoiced speech segments and long term average spectrum (LTAS). These 58 LLDs are joined by their first and second derivates (velocity and acceleration contours). Furthermore these 174 speech feature contours are described in average by 129 functionals in time and frequency domain feature space.

(i) functionals from elementary statistics (time domain): minimum, maximum, range, mean, median, trimmed mean 10%, trimmed mean 25%, 10th, 25th, 75th, and 90th percentile, interquartil range, mean average deviation, standard deviation, skewness, kurtosis, robust regression coefficients, intercept, frequency of values beyond different threshold (median +/- 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 * median), minimum and maximum position, relative minimum and maximum position; entropy, number of peaks, mean standard deviation, minimum and maximum of peak position, peak amplitude value, delta peak position, and delta peak amplitude.

(ii) functionals from spectral domain: spectral envelope (regression coefficient, intercept), power spectral density of 5 frequency bands, relative power, maximum within 5 frequency bands). This procedure of combining LLDs and functionals results in 22,544 raw features. To take individual response patterns into account, we added the same amount of speaker
normalized features (differences between raw feature vectors and the speaker specific mean of this feature vector). In sum, we computed a total amount of 45,088 features per speech sample.

3.4. Feature selection

The purpose of feature selection is to reduce the dimensionality, which can otherwise hurt the performance of the pattern classifiers. The small amount of data also suggested that longer vectors would not be advantageous due to overlearning of data. In this study, we used a rather relevance maximizing than redundancy minimizing correlation filter approach (filter criteria: pearson correlation > .40) [17].

3.5. Classification

For the classification we used a Support Vector Machine (SVM; dot kernel function), a Multilayer Perceptron (MLP; feedforward net, backpropagation, 2 hidden sigmoid layer, 5 nodes each), a k-Nearest Neighbor (KNN; k = 1, 2, or 3), a Decision Tree, a Random Forest, a Naïve Bayes, a Basic Rule Learner, a Radial Basis Function (RBF), a Logistic Base, a Fuzzy Lattice Reasoning and a Logistic Regression. Specifically SVM have proven to best model static acoustic feature vectors [14] and were therefore chosen and computed with Matlab software. Due to data sparsity, a speaker-dependent approach has been chosen, a leave-one-sample-out cross-validation, i.e in turn, one case was used as test set and all other as train. The final classification errors were calculated averaging over all classifications.

4. Results

In order to determine the multivariate prediction performance, different classifiers were applied on the 230 features remaining after the correlation-filter procedure. For all configurations, we trained the classifier and applied them on the test sets. The averaged recognition rates (RR = ratio correctly classified samples through all samples, and CL = class-wise averaged classification rate) of the different classifiers for the two class prediction problems are: SVM (86.1/82.8), MLP (80.9/79.3), 1-NN (73.4/70.3), 2-NN (62.8/69.5), 3-NN (76.6/72.1), DT (75.5/70.6), Random Forest (68.1/62.9), Naïve Bayes (73.4/70.9), Basic Rule Learner (71.3/71.7), RBF (72.3/68.2), Logistic Base (86.1/82.4), Fuzzy Lattice Reasoning (75.5/75.1) and Logistic Regression (86.2/82.4). The SVM prediction reached the highest recognition accuracy, and was therefore applied for further detailed LLD based analyses. The results are depicted in Table 1.

Table 1: Recognition rates (RR) and class-wise averaged classification rate (CL) (in %) on the test set using different LLDs feature sets (raw and speaker normalized features surviving the correlation-filter; # = number of features) on the SVM classifier.

<table>
<thead>
<tr>
<th>LLDs</th>
<th>Raw</th>
<th>Raw & Normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td># RR CL</td>
<td># RR CL</td>
<td></td>
</tr>
<tr>
<td>F0</td>
<td>2 72.3 68.1 3 78.7 75.7</td>
<td></td>
</tr>
<tr>
<td>Formants</td>
<td>2 71.3 65.4 3 86.2 82.8</td>
<td></td>
</tr>
<tr>
<td>HNR/ Int</td>
<td>11 70.2 65.8 20 66.0 60.0</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>1 64.9 57.8 39 64.9 56.0</td>
<td></td>
</tr>
<tr>
<td>MFCCs</td>
<td>5 72.3 67.5 19 74.5 69.2</td>
<td></td>
</tr>
<tr>
<td>LFCCs</td>
<td>7 73.4 70.3 72 77.7 72.9</td>
<td></td>
</tr>
<tr>
<td>LPCs</td>
<td>14 74.5 71.1 67 70.2 65.8</td>
<td></td>
</tr>
<tr>
<td>LTAS</td>
<td>0 - - 2 67.0 54.4</td>
<td></td>
</tr>
<tr>
<td>All LLDs</td>
<td>53 70.2 65.8 230 86.1 82.8</td>
<td></td>
</tr>
</tbody>
</table>

5. Discussion

The uncommonly large brute-force feature set (45k) computation was able to determine whether a subject’s sleepiness is beyond a critical microsleep threshold. The most important LLD feature classes for this prediction were according to (a) the sum of features remaining the correlation-filter: LFCCs, LPCs, and duration of voiced/unvoiced; according to (b) the prediction accuracy of the single LLD feature class: Formants, F0, and LFCCs. Using all LLDs we achieved on this two-class classification problem an recognition rate of over 86% on unseen data with a Support Vector Machine classifier. Due to the recognition rates of speech based emotion and stress recognition, the results for the reported classification performance of about 80% for the 2-class sleepiness prediction problem were largely as could be expected [2,3,8,9,11,12,14].
Nevertheless our results are limited by several facts. The present results are preliminary and need to be replicated using a natural speech environment. Nevertheless, it would seem advisable that future studies address the main topics of improving the acoustic sleepiness analysis and finding evidence for its validity in real-world applications. For further improvement of the acoustic sleepiness analysis, the following issues have to be addressed: (a) The computation of signal processing features derived from state space domains as e.g. average angle or length of embedded space vectors \[15,19\], Lyapunov exponents, correlation dimensions, time resolved densities, fractal dimensions, multiscale entropies, and recurrence quantification analyses \[22\] should be computed. In addition, different normalization procedures could be applied as, e.g. computing speaker specific baseline corrections not on high-level features but on duration adapted low-level contours. (b) For finding the optimal feature subset, further supervised filter based subset selection methods (e.g. IGA) or supervised wrapper-based subset selection methods, should be applied (e.g. sequential forward floating search). Another method for reducing the dimensionality of the feature space are unsupervised feature transformations methods (e.g. PCA Network, Nonlinear Autoassociative Network, Multidimensional Scaling, Sammon Map, Enhanced Lipschitz Embedding, SOM) or supervised feature transformation methods (e.g. LDA).

References